Glucose uptake in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101.

نویسندگان

  • J Lee
  • H P Blaschek
چکیده

Glucose uptake and accumulation by Clostridium beijerinckii BA101, a butanol hyperproducing mutant, were examined during various stages of growth. Glucose uptake in C. beijerinckii BA101 was repressed 20% by 2-deoxyglucose and 25% by mannose, while glucose uptake in C. beijerinckii 8052 was repressed 52 and 28% by these sugars, respectively. We confirmed the presence of a phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) associated with cell extracts of C. beijerinckii BA101 by glucose phosphorylation by PEP. The PTS activity associated with C. beijerinckii BA101 was 50% of that observed for C. beijerinckii 8052. C. beijerinckii BA101 also demonstrated lower PTS activity for fructose and glucitol. Glucose phosphorylation by cell extracts derived from both C. beijerinckii BA101 and 8052 was also dependent on the presence of ATP, a finding consistent with the presence of glucokinase activity in C. beijerinckii extracts. ATP-dependent glucose phosphorylation was predominant during the solventogenic stage, when PEP-dependent glucose phosphorylation was dramatically repressed. A nearly twofold-greater ATP-dependent phosphorylation rate was observed for solventogenic stage C. beijerinckii BA101 than for solventogenic stage C. beijerinckii 8052. These results suggest that C. beijerinckii BA101 is defective in PTS activity and that C. beijerinckii BA101 compensates for this defect with enhanced glucokinase activity, resulting in an ability to transport and utilize glucose during the solventogenic stage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for the presence of an alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101.

The effects of substrate analogs and energy inhibitors on glucose uptake and phosphorylation by Clostridium beijerinckii provide evidence for the operation of two uptake systems: a previously characterized phosphoenolpyruvate-dependent phosphotransferase system (PTS) and a non-PTS system probably energized by the transmembrane proton gradient. In both wild-type C. beijerinckii NCIMB 8052 and th...

متن کامل

Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis.

Clostridium beijerinckii is an anaerobic bacterium used for the fermentative production of acetone and butanol. The recent availability of genomic sequence information for C. beijerinckii NCIMB 8052 has allowed for an examination of gene expression during the shift from acidogenesis to solventogenesis over the time course of a batch fermentation using a ca. 500-gene set DNA microarray. The micr...

متن کامل

Effect of acetate on molecular and physiological aspects of Clostridium beijerinckii NCIMB 8052 solvent production and strain degeneration.

The addition of sodium acetate to chemically defined MP2 medium was found to increase and stabilize solvent production and also increase glucose utilization by Clostridium beijerinckii NCIMB 8052. RNA and enzyme analyses indicated that coenzyme A (CoA) transferase was highly expressed and has higher activity in C. beijerinckii NCIMB 8052 grown in MP2 medium containing added sodium acetate than ...

متن کامل

Complete Genome Sequence of Solvent-Tolerant Clostridium beijerinckii Strain SA-1

We report the complete genome sequence of Clostridium beijerinckii SA-1, derived by directed evolution from C. beijerinckii NCIMB 8052, selecting for enhanced solvent tolerance. This sequence allows for accurate placement of SA-1 as C. beijerinckii, permits functional analyses of mutant phenotypes, and suggests methods for distinguishing SA-1 from its parent.

متن کامل

Impact of syringaldehyde on the growth of Clostridium beijerinckii NCIMB 8052 and butanol production

While lignocellulosic biomass excels as a cheap, renewable resource for biofuel production, it does present some challenges such as generation of microbial inhibitory compounds. The mode of selective inhibition of acetone–butanol–ethanol (ABE) production (as opposed to cell growth) by syringaldehyde on Clostridium beijerinckii NCIMB 8052 was examined. C. beijerinckii 8052 grown in syringaldehyd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 67 11  شماره 

صفحات  -

تاریخ انتشار 2001